Экран_ltps_или_ips_что_лучше

Экран_ltps_или_ips_что_лучше

Какая технология лучше IPS или LTPS?

В каждом электронном устройстве есть дисплей, который состоит из 4 вещей: сенсорного экрана, прослойки из воздуха или клея, матрицы, источника света. От матрицы зависит то, как будет отображаться графика, яркость, разрешение экрана его время отклика — это то, за сколько миллисекунд будет выполнено какое-нибудь действие. Её вставляют в экраны для того, чтобы у него были пиксели — точки, которые передают цвета, чтобы получить изображение.

Матрицы делают по трём технологиям: TN, IPS, LTPS. Первая устарела и не используется, а 2 следующие популярны. Вот информация о них.

IPS — это технология производства жидкокристаллических матриц. Она представляет собой слоёный пирог из 4 элементов:

  1. Фильтры, которые регулируют цвет пикселя с его яркостью. Находятся сверху и снизу.
  2. Жидкие кристаллы. Когда питание отключено, они выглядят как шарики. При подаче тока — меняют свою форму на овальную.
  3. Направительные электроды. Меняют яркость свечения за счёт того, что они могут поворачивать жидкие кристаллы.
  4. Лампа — подаёт свет на дисплей.

Технология IPS заменила TN, потому что те уступают им по всем характеристикам. Углы обзора равны 170 градусам, а у TN — 90-150. Цветопередача ЖК-дисплеев в несколько раз лучше. Например, IPS выдаёт “эталонный” чёрный цвет, который получается, если смешать красный, зелёный, синий цвета.

В устройствах используют 2 вида таких экранов: с мощной светодиодной подсветкой — для больших размеров, с просветлённой прослойкой — для маленьких. Это происходит потому, что ЖК-дисплеи толще TN. Свету сложно пройти через него. Поэтому, либо увеличивают мощность свечения, либо уменьшают сопротивления среды.

LTPS — это технология, в которой используется низкотемпературный поликристаллический кремний. Он представляет из себя кристаллы кремния размером 0,1 микрон. Чтобы сделать кремний поликристаллическим, его осаживают специальным газом, а затем отжигают температурой 900 градусов. После этого кремний ещё раз обжигают лазером, после чего его плёнка становится поликристаллами.

У этой матрицы меньше время отклика за счёт высокой активности электронов. Она равна 200 см 2 /см, а у IPS только 100. Разница во времени человек не ощущает на себе, но если дать ему два разных дисплея, то он скажет, что LTPS чувствительнее.

Низкотемпературная технология отличается от других тем, что:

  • Она делается из меньшего количества деталей.
  • У неё низкое потребление энергии. Экраны меньше разряжают аккумулятор или потребляют тока.
  • Электроны быстрее реагируют. Телефоны с таким дисплеем лучше реагируют на нажатия.

Общие черты

Эти матрицы делаются по разным технологиям и между ними есть отличия. Но есть сходства. Вот они:

Основной материал — кремний

Из кремния делаются жидкие кристаллы. Они поворачиваются управляющим электродом, который подаёт на кристалл электроны и поворачивает его. Это главная часть любого ЖК-дисплея.

Производители выбрали кремний потому, что:

  • У него рабочая температура до 200 градусов.
  • Он холодостойкий.
  • Хорошо проводит ток, если добавить примеси.
  • В природе кремния больше, чем других полупроводников.
  • Его просто обрабатывать

В 2015 году выпустили смартфоны с матрицей на оксиде индия-галлия-цинка. Но телефоны получились дорогими без отличий качества.

Большой угол обзора

Когда у телефона маленький угол обзора, то пользователю не удобно на него смотреть. Ему сложно держать смартфон перпендикулярно глазам, потому что физиологические особенности не дают этого делать.

У ЖК-экранов угол обзора 170 градусов. Этого достаточно, чтобы комфортно смотреть на экран телефона, разглядывая текст или картинки. Большой угол обзора особенно нужен для мониторов.

Похожее строение

У этих технологий примерно одинаковая схема устройства: фильтры, жидкие кристаллы, управляющие электроды. светодиоды.

Разница только в том, как производят поликристаллы из кремния. У PTLS он полимеризуется при температуре 400 градусов. Так не повреждается стекло, которое плавится при 650 градусах.

Разные названия технологий не означают, что их по-разному изготавливают. Они устроены по одному принципу, у них один полупроводник — кремний. Даже применяются в одинаковой технике.

Различия

Технологии похожи по принципу производства. Но между ними есть различия, которые отражаются на их устройстве, а, значит, производительности. Теперь о разнице между ними:

Количество элементов

Производителям важно, каким образом изготавливаются их матрицы. Они стремятся, чтобы производство было проще. Поэтому, при разработке учитывается количество компонентов.

Все схемы IPS матрицы находятся непосредственно на поверхности. От неё идёт 4 тысячи контактов для соединения с драйвером. А у LTPS их меньше 200 за счёт того, что часть схем расположено на стекле. Это сделало производство проще и быстрее.

Вместе с уменьшением контактов, появилась возможность уменьшить размеры. Это увеличивает варианты применения экрана с этой технологией.

Скорость отклика

У низкотемпературного дисплея скорость отклика в 2 раза выше, чем у IPS. Это происходит за счёт лучшей подвижности электронов и упрощённого устройства дисплея. За счёт скорости отклика он становится чувствительнее.

Стоимость

LTPS — это “продвинутая” версия IPS. Для неё используется другой материал — низкотемпературный поликристаллический кремний, который больше обрабатывается, прежде чем вставляется в матрицу. 20-кратная разница количества контактов и вынос части схем на стекло тоже повлияли на цену.

Сейчас экран с IPS матрицей стоит 1,5 тысячи рублей, а LTPS — от 5 тысяч. Притом диагональ экранов одинаковая.

Какую технологию выбрать

В LTPS исправили недостатки IPS. Они быстрее, проще устроены, легче в производстве. Технология потребляет меньше энергии. Но их стоимость начинается от 5 тысяч рублей.

IPS матрицы уступают LTPS, но это не значит, что они плохие. Кроме скорости отклика, они похожи. У них одинаковая яркость. Тем более, производят их с одинаковыми разрешениями. А стоят от 1.5 тысячи.

Дисплеи с этими технологиями практически не отличаются, кроме цены.

Какая технология лучше IPS или LTPS?

В каждом электронном устройстве есть дисплей, который состоит из 4 вещей: сенсорного экрана, прослойки из воздуха или клея, матрицы, источника света. От матрицы зависит то, как будет отображаться графика, яркость, разрешение экрана его время отклика — это то, за сколько миллисекунд будет выполнено какое-нибудь действие. Её вставляют в экраны для того, чтобы у него были пиксели — точки, которые передают цвета, чтобы получить изображение.

Читайте также:  Сколько_весит_один_куб_щебня

Матрицы делают по трём технологиям: TN, IPS, LTPS. Первая устарела и не используется, а 2 следующие популярны. Вот информация о них.

IPS — это технология производства жидкокристаллических матриц. Она представляет собой слоёный пирог из 4 элементов:

  1. Фильтры, которые регулируют цвет пикселя с его яркостью. Находятся сверху и снизу.
  2. Жидкие кристаллы. Когда питание отключено, они выглядят как шарики. При подаче тока — меняют свою форму на овальную.
  3. Направительные электроды. Меняют яркость свечения за счёт того, что они могут поворачивать жидкие кристаллы.
  4. Лампа — подаёт свет на дисплей.

Технология IPS заменила TN, потому что те уступают им по всем характеристикам. Углы обзора равны 170 градусам, а у TN — 90-150. Цветопередача ЖК-дисплеев в несколько раз лучше. Например, IPS выдаёт “эталонный” чёрный цвет, который получается, если смешать красный, зелёный, синий цвета.

В устройствах используют 2 вида таких экранов: с мощной светодиодной подсветкой — для больших размеров, с просветлённой прослойкой — для маленьких. Это происходит потому, что ЖК-дисплеи толще TN. Свету сложно пройти через него. Поэтому, либо увеличивают мощность свечения, либо уменьшают сопротивления среды.

LTPS — это технология, в которой используется низкотемпературный поликристаллический кремний. Он представляет из себя кристаллы кремния размером 0,1 микрон. Чтобы сделать кремний поликристаллическим, его осаживают специальным газом, а затем отжигают температурой 900 градусов. После этого кремний ещё раз обжигают лазером, после чего его плёнка становится поликристаллами.

У этой матрицы меньше время отклика за счёт высокой активности электронов. Она равна 200 см 2 /см, а у IPS только 100. Разница во времени человек не ощущает на себе, но если дать ему два разных дисплея, то он скажет, что LTPS чувствительнее.

Низкотемпературная технология отличается от других тем, что:

  • Она делается из меньшего количества деталей.
  • У неё низкое потребление энергии. Экраны меньше разряжают аккумулятор или потребляют тока.
  • Электроны быстрее реагируют. Телефоны с таким дисплеем лучше реагируют на нажатия.

Общие черты

Эти матрицы делаются по разным технологиям и между ними есть отличия. Но есть сходства. Вот они:

Основной материал — кремний

Из кремния делаются жидкие кристаллы. Они поворачиваются управляющим электродом, который подаёт на кристалл электроны и поворачивает его. Это главная часть любого ЖК-дисплея.

Производители выбрали кремний потому, что:

  • У него рабочая температура до 200 градусов.
  • Он холодостойкий.
  • Хорошо проводит ток, если добавить примеси.
  • В природе кремния больше, чем других полупроводников.
  • Его просто обрабатывать

В 2015 году выпустили смартфоны с матрицей на оксиде индия-галлия-цинка. Но телефоны получились дорогими без отличий качества.

Большой угол обзора

Когда у телефона маленький угол обзора, то пользователю не удобно на него смотреть. Ему сложно держать смартфон перпендикулярно глазам, потому что физиологические особенности не дают этого делать.

У ЖК-экранов угол обзора 170 градусов. Этого достаточно, чтобы комфортно смотреть на экран телефона, разглядывая текст или картинки. Большой угол обзора особенно нужен для мониторов.

Похожее строение

У этих технологий примерно одинаковая схема устройства: фильтры, жидкие кристаллы, управляющие электроды. светодиоды.

Разница только в том, как производят поликристаллы из кремния. У PTLS он полимеризуется при температуре 400 градусов. Так не повреждается стекло, которое плавится при 650 градусах.

Разные названия технологий не означают, что их по-разному изготавливают. Они устроены по одному принципу, у них один полупроводник — кремний. Даже применяются в одинаковой технике.

Различия

Технологии похожи по принципу производства. Но между ними есть различия, которые отражаются на их устройстве, а, значит, производительности. Теперь о разнице между ними:

Количество элементов

Производителям важно, каким образом изготавливаются их матрицы. Они стремятся, чтобы производство было проще. Поэтому, при разработке учитывается количество компонентов.

Все схемы IPS матрицы находятся непосредственно на поверхности. От неё идёт 4 тысячи контактов для соединения с драйвером. А у LTPS их меньше 200 за счёт того, что часть схем расположено на стекле. Это сделало производство проще и быстрее.

Вместе с уменьшением контактов, появилась возможность уменьшить размеры. Это увеличивает варианты применения экрана с этой технологией.

Скорость отклика

У низкотемпературного дисплея скорость отклика в 2 раза выше, чем у IPS. Это происходит за счёт лучшей подвижности электронов и упрощённого устройства дисплея. За счёт скорости отклика он становится чувствительнее.

Стоимость

LTPS — это “продвинутая” версия IPS. Для неё используется другой материал — низкотемпературный поликристаллический кремний, который больше обрабатывается, прежде чем вставляется в матрицу. 20-кратная разница количества контактов и вынос части схем на стекло тоже повлияли на цену.

Сейчас экран с IPS матрицей стоит 1,5 тысячи рублей, а LTPS — от 5 тысяч. Притом диагональ экранов одинаковая.

Какую технологию выбрать

В LTPS исправили недостатки IPS. Они быстрее, проще устроены, легче в производстве. Технология потребляет меньше энергии. Но их стоимость начинается от 5 тысяч рублей.

IPS матрицы уступают LTPS, но это не значит, что они плохие. Кроме скорости отклика, они похожи. У них одинаковая яркость. Тем более, производят их с одинаковыми разрешениями. А стоят от 1.5 тысячи.

Дисплеи с этими технологиями практически не отличаются, кроме цены.

Экраны в смартфонах: какой выбрать?

До массового распространения смартфонов, при покупке телефонов мы оценивали их, главным образом, по дизайну и лишь изредка обращали внимание на функциональные возможности. Времена изменились: теперь все смартфоны имеют примерно одинаковые возможности, а при взгляде только на фронтальную панель, один гаджет едва можно отличить от другого. На передний план вышли технические характеристики устройств, и самой важной среди них для многих является экран. Мы расскажем, что же кроется за терминами TFT, TN, IPS, PLS, и поможем подобрать смартфон с нужными характеристиками экрана.

Типы матриц

В современных смартфонах главным образом применяются три технологии производства матриц: две основаны на жидких кристаллах — TN+film и IPS, а третья — AMOLED — на органических светодиодах. Но прежде чем начать, стоит рассказать об аббревиатуре TFT, являющейся источником множества заблуждений. TFT (thin-film transistor) — это тонкоплёночные транзисторы, которые используются для управления работой каждого субпикселя современных экранов. Технология TFT применяется во всех перечисленных выше типах экранов, включая AMOLED, поэтому, если где-то говорится о сравнении TFT и IPS, то это в корне неверная постановка вопроса.

Читайте также:  Три_провода_в_вилке_какой_куда

В большинстве TFT-матриц используется аморфный кремний, но недавно в производство стали внедряться TFT на поликристаллическом кремнии (LTPS-TFT). Главные преимущества новой технологии — уменьшение энергопотребления и размеров транзисторов, что позволяет достигать высоких значений плотности пикселей (более 500 ppi). Одним из первых смартфонов с IPS-дисплеем и матрицей LTPS-TFT стал OnePlus One.

Теперь, когда мы разобрались с TFT, перейдём непосредственно к типам матриц. Несмотря на большое разнообразие разновидностей LCD, все они имеют один и тот же базовый принцип работы: приложенный к молекулам жидких кристаллов ток задаёт угол поляризации света (он влияет на яркость субпикселя). Поляризованный свет затем проходит через светофильтр и окрашивается в цвет соответствующего субпикселя. Первыми в смартфонах появились наиболее простые и дешёвые матрицы TN+film, название которых часто сокращается до TN. Они имеют малые углы обзора (не более 60 градусов при отклонении от вертикали), причём даже при небольших наклонах изображение на экранах с такими матрицами инвертируется. Среди других недостатков TN-матриц — малая контрастность и низкая точность цветопередачи. На сегодняшний день такие экраны используются только в самых дешёвых смартфонах, а подавляющее большинство новых гаджетов имеют уже более совершенные дисплеи.

Наиболее распространённой в мобильных гаджетах сейчас является технология IPS, иногда обозначаемая как SFT. IPS-матрицы появились 20 лет назад и с тех пор выпускались в различных модификациях, число которых приближается к двум десяткам. Тем не менее, выделить среди них стоит те, которые являются наиболее технологичными и активно используются на данный момент: AH-IPS от компании LG и PLS — от компании Samsung, которые весьма близки по своим свойствам, что даже являлось поводом для судебного разбирательства между производителями. Современные модификации IPS имеют широкие углы обзора, которые близки к 180 градусам, реалистичную цветопередачу и обеспечивают возможность создания дисплеев с высокой плотностью пикселей. К сожалению, производители гаджетов практически никогда не сообщают точный тип IPS-матриц, хотя при использовании смартфона различия будут видны невооружённым глазом. Для более дешёвых IPS-матриц характерно выцветание картинки при наклонах экрана, а также невысокая точность цветопередачи: изображение может быть либо слишком «кислотным», либо, напротив, «блёклым».

Что касается энергопотребления, то в жидкокристаллических дисплеях оно по большей части определяется мощностью элементов подсветки (в смартфонах для этих целей используются светодиоды), поэтому потребление матриц TN+film и IPS можно считать примерно одинаковым при совпадающем уровне яркости.

На LCD совершенно не похожи матрицы, созданные на основе органических светодиодов (OLED). В них источником света служат сами субпиксели, представляющие собой сверхминиатюрные органические светодиоды. Так как нет необходимости во внешней подсветке, такие экраны можно сделать тоньше жидкокристаллических. В смартфонах применяется разновидность технологии OLED — AMOLED, которая использует активную TFT-матрицу для управления субпикселями. Именно TFT-матрицы являются самым распространённым способом создания цветных OLED-дисплеев, поскольку они позволяют управлять каждым субпикселем в отдельности. AMOLED-матрицы обеспечивают самый глубокий чёрный цвет, поскольку для его «отображения» требуется лишь полностью отключить светодиоды. По сравнению с LCD, такие матрицы обладают более низким энергопотреблением, особенно при использовании тёмных тем оформления, в которых чёрные участки экрана вовсе не потребляют энергию. Другая характерная особенность AMOLED — слишком насыщенные цвета. На заре своего появления такие матрицы действительно имели неправдоподобную цветопередачу, и, хотя подобные «детские болячки» давно в прошлом, до сих пор большинство смартфонов с такими экранами имеют встроенную настройку насыщенности, которая позволяет приблизить изображение на AMOLED по восприятию к IPS-экранам.

Другим ограничением AMOLED экранов раньше являлся неодинаковый срок службы светодиодов различных цветов. Через пару лет использования смартфона это могло привести к выгоранию субпикселей и остаточному изображению некоторых элементов интерфейса, в первую очередь — на панели уведомлений. Но, как и в случае с цветопередачей, эта проблема давно ушла в прошлое, и современные органические светодиоды рассчитаны минимум на три года беспрерывной работы.

Подведём краткий итог. Наиболее качественное и яркое изображение на данный момент обеспечивают AMOLED-матрицы: даже Apple, по слухам, в одном из следующих iPhone будет использовать такие дисплеи. Но, стоит учитывать, что все новейшие разработки компания Samsung, как основной производитель таких панелей, оставляет себе, а другим производителям продаёт «прошлогодние» матрицы. Поэтому, при выборе смартфона не от Samsung стоит смотреть в сторону качественных IPS-экранов. А вот гаджеты с дисплеями TN+film выбирать ни в коем случае не стоит — сегодня эта технология уже считается устаревшей.

Рисунок субпикселей

На восприятие изображения на экране может влиять не только технология матрицы, но и рисунок субпикселей. Впрочем, с LCD всё довольно просто: в них каждый RGB-пиксель состоит из трёх вытянутых субпикселей, которые, в зависимости от модификации технологии, могут иметь форму прямоугольника или «галочки».

В AMOLED-экранах всё интереснее. Поскольку в таких матрицах источниками света являются сами субпиксели, а человеческий глаз более чувствителен к чистому зелёному свету, чем к чистому красному или синему, использование в AMOLED того же рисунка, что и в IPS, ухудшило бы цветопередачу и сделало картинку нереалистичной. Попыткой решить эту проблему стала первая версия технологии PenTile, в которой использовались пиксели двух типов: RG (красный-зелёный) и BG (синий-зелёный), состоящие из двух субпикселей соответствующих цветов. Причём, если красные и синие субпиксели имели форму, близкую к квадратам, то зелёные больше напоминали сильно вытянутые прямоугольники. Недостатками такого рисунка были «грязный» белый цвет, зазубренные края на стыке разных цветов, а при низком ppi — четко видимая сетка подложки субпикселей, появляющаяся из-за слишком большого расстояния между ними. К тому же, разрешение, указываемое в характеристиках таких устройств, было «нечестным»: если IPS HD матрица имеет 2764800 субпикселей, то AMOLED HD матрица — всего 1843200, что приводило к видимой невооружённым глазом разнице в чёткости IPS- и AMOLED-матриц с, казалось бы, одинаковой плотностью пикселей. Последним флагманским смартфоном с такой AMOLED матрицей стал Samsung Galaxy S III.

Читайте также:  Рисунок_из_кирпича_на_фасаде_дома

В смартпэде Galaxy Note II южнокорейская компания сделала попытку отказа от PenTile: экран устройства имел полноценные RBG-пиксели, хотя и с необычным расположением субпикселей. Тем не менее, по неясным причинам, в дальнейшем Samsung от такого рисунка отказалась — возможно, производитель столкнулся с проблемой дальнейшего увеличения ppi.

В своих современных экранах Samsung вернулась к RG-BG пикселям с использованием нового типа рисунка, который был назван Diamond PenTile. Новая технология позволила сделать белый цвет более натуральным, а что касается зазубренных краёв (например, вокруг белого объекта на чёрном фоне были чётко видны отдельные красные субпиксели), то эта проблема была решена ещё проще — увеличением ppi до такой степени, что неровности перестали быть заметны. Diamond PenTile используется во всех флагманах Samsung начиная с модели Galaxy S4.

В завершении этого раздела стоит сказать ещё об одном рисунке AMOLED-матриц — PenTile RGBW, который получается добавлением к трём основным субпикселям четвёртого, белого. До появления Diamond PenTile такой рисунок был единственным рецептом чистого белого цвета, но он так и не получил широкого распространения — одним из последних мобильных гаджетов с PenTile RGBW стал планшет Galaxy Note 10.1 2014. Сейчас AMOLED-матрицы с RGBW-пикселями применяются в телевизорах, поскольку в них не требуется высокий показатель ppi. Справедливости ради, также упомянем, что RGBW-пиксели могут использоваться и в LCD, но примеры использования таких матриц в смартфонах нам не известны.

В отличие от AMOLED, качественные IPS-матрицы никогда не испытывали проблем в качестве, связанных с рисунком субпикселей. Тем не менее, технология Diamond PenTile, вместе с высокой плотностью пикселей, позволила AMOLED догнать и обогнать IPS. Поэтому, если вы выбираете гаджеты придирчиво, не стоит покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi. При более высокой плотности никакие дефекты заметны не будут.

Конструктивные особенности

На одних только технологиях формирования изображений разнообразие дисплеев современных мобильных гаджетов не заканчивается. Одна из первых вещей, за которую взялись производители — воздушная прослойка между проекционно-ёмкостным сенсором и непосредственно дисплеем. Так появилась технология OGS, объединяющая сенсор и матрицу в один стеклянный пакет в виде сэндвича. Это дало значительный рывок по качеству изображения: увеличилась максимальная яркость и углы обзора, была улучшена цветопередача. Само собой, толщина всего пакета также была уменьшена, что позволило создать более тонкие смартфоны. Увы, но недостатки у технологии тоже есть: теперь, если вы разбили стекло, поменять его отдельно от дисплея практически нереально. Но преимущества в качестве всё же оказались важнее и теперь не-OGS экраны можно встретить разве что в самых дешёвых аппаратах.

Дальше всех в этом направлении продвинулась компания Samsung, которая стала ставить ёмкостные датчики прямо между субпикселями матрицы светодиодов, что позволило ещё сильнее уменьшить толщину пакета.

Популярными в последнее время стали и эксперименты с формой стекла. И начались они не недавно, а как минимум в 2011 году: HTC Sensation имел вогнутое в центре стекло, которое, по замыслу производителя, должно было защитить экран от царапин. Но на качественно новый уровень такие стёкла вышли с появлением «2.5D экранов» с загнутым по краям стеклом, что создаёт ощущение «бесконечного» экрана и делает грани смартфонов более гладкими. Такие стёкла в своих гаджетах активно использует компания Apple, и в последнее время они становятся всё более и более популярными.

Логичным шагом в том же направлении стало изгибание не только стекла, но и самого дисплея, что стало возможным при использовании полимерных подложек вместо стеклянных. Тут пальма первенства, конечно, принадлежит компании Samsung с её смартфоном Galaxy Note Edge, в котором была изогнута одна из боковых граней экрана.

Другой способ предложила компания LG, которая сумела изогнуть не только дисплей, но и весь смартфон по его короткой стороне. Однако LG G Flex и его преемник не завоевали популярности, после чего производитель отказался от дальнейшего выпуска подобных аппаратов.

Также некоторые компании стараются улучшить взаимодействие человека с экраном, работая над его сенсорной частью. Например, некоторые устройства оснащаются сенсорами с повышенной чувствительностью, которые позволяют работать с ними даже в перчатках, а другие экраны получают индуктивную подложку для поддержки стилусов. Первая технология активно используется компаниями Samsung и Microsoft (бывшая Nokia), а вторая — Samsung, Microsoft и Apple.

Будущее экранов

Не стоит думать, что современные дисплеи в смартфонах достигли высшей точки своего развития: технологиям ещё есть куда расти. Одними из самых перспективных являются дисплеи на квантовых точках (QLED). Квантовая точка — это микроскопический кусочек полупроводника, в котором существенную роль начинают играть квантовые эффекты. Упрощенно процесс излучения выглядит так: воздействие слабого электрического тока заставляет электроны квантовых точек изменять энергию, излучая при этом свет. Частота излучаемого света зависит от размера и материала точек, благодаря чему можно добиться практически любого цвета в видимом диапазоне. Учёные обещают, что QLED матрицы будут иметь лучшую цветопередачу, контрастность, более высокую яркость и низкое энергопотребление. Частично технология экранов на квантовых точках используется в экранах телевизоров Sony, а прототипы имеются у LG и Philips, но о массовом применении таких дисплеев в телевизорах или смартфонах речи пока не идёт.

Высока вероятность и того, что в ближайшем будущем мы увидим в смартфонах не просто изогнутые, но и полностью гибкие, дисплеи. Тем более, что почти готовые к массовому производству прототипы таких AMOLED матриц существуют уже пару лет. Ограничением же выступает электроника смартфона, которую гибкой сделать пока невозможно. С другой стороны, крупные компании могут изменить саму концепцию смартфона, выпустив что-то вроде гаджета, показанного на фотографии ниже — нам остаётся только ждать, ведь развитие технологий происходит прямо на наших глазах.

Ссылка на основную публикацию
Щучьи_головы_верченые_рецепт
Щучьи головы: как их вкусно приготовить При покупке рыбы некоторые хозяйки выбрасывают головы, а это очень даже зря! В них...
Что_такое_сварочный_трансформатор
Что такое сварочный трансформатор сварочный трансформатор — Трансформатор, предназначенный для питания установок электрической сварки [ГОСТ 16110 82] Тематики трансформатор Классификация...
Что_такое_сода_гашеная_уксусом
Как правильно гасить соду для получения пушистой выпечки Желая порадовать ароматной выпечкой домочадцев, хозяйки используют дрожжи и разрыхлители для теста....
Щучья_голова_в_духовке_рецепты
Щучьи головы: как их вкусно приготовить При покупке рыбы некоторые хозяйки выбрасывают головы, а это очень даже зря! В них...
Adblock detector